LEVEL 1 DOWNSTREAM ANALYSIS

8814 MI Single-Family Residence

8814 SE 40th Street

Mercer Island, WA 98040

Prepared For:

Luxwest Development LLC

PO Box 2624

Issaquah, WA 98027

Date: December 9, 2022

4625 – 126th Avenue East, Edgewood, WA 98372

(206) 450-5096

www.tebaldiengineering.com

TABLE OF CONTENTS

1.0 STUDY AREA DEFINITION AND MAPS

Figure 1.1 - Vicinity Map

Figure 1.2 – Downstream Drainage Map

Figure 1.3 – FEMA Map

2.0 RESOURCE REVIEW

Figure 2.1 - Soils Map

3.0 FIELD INSPECTION

Figure 3.1 - Offsite Drainage System Table

4.0 DRAINAGE SYSTEM DESCRIPTION AND PROBLEMS DESCRIPTION

5.0 MITIGATION OF EXISTING OR POTENTIAL PROBLEMS

1.0 STUDY AREA DEFINITION AND MAPS

The proposed project site is located within a portion of the Section 7, Township 24 North, Range 5 East of the Willamette Meridian with a total project site area of 0.30 acres. More specifically, the site is located at 8814 SE 40th Street, Mercer Island, WA 98040. See Figure 1.1-Vicinity Map in this section for the location of the proposed project site. The existing property currently has an existing home along with the associated driveway and utilities. On-site native soils are classified as Arents-Alderwood per the NRCS soil survey. See soils map in section 2.0.

The site is abutted by single-family development to the north, east and west and SE 40th Street to the south. The existing site contains about 13,112 square feet of existing house, driveway and landscaping. The site generally slopes from east to west with slopes ranging from 0 to 20 percent.

UPSTREAM DRAINAGE ANALYSIS

Based on review of the agency GIS maps, topographic survey and observations there are no upstream flows tributary to the project site.

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

2.0 RESOURCE REVIEW

Available Basin Plan: No basin plan was identified during the preparation of this report.

Finalized Drainage Studies: No other finalized drainage studies were identified during the preparation of this report.

FEMA Maps: The site has been identified in Zone X

Wetland Inventory Maps: There are no wetlands on or near the project site.

Critical Area Maps: There are no other critical areas on or near the project site.

United States Department of Agriculture King County Soils Survey: On-site soils consist of Arents-Alderwood type soils.

Migrating River Studies: There are no rivers on or near the project site.

Page 1 of 3

National Cooperative Soil Survey

Conservation Service

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Polygons Soil Map Unit Polygons Soil Map Unit Polygons Soil Map Unit Points Special Point Features Blowout Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry	 Spoil Area Stony Spot Very Stony Spot Very Stony Spot Wet Spot Other Special Line Features Water Features Water Features Streams and Canals Transportation Freams and Canals Interstate Highways US Routes US Routes Major Roads Local Roads Background Mairal Photography	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can ca misunderstanding of the detail of mapping and accuracy of line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more de scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Me projection, which preserves direction and shape but distort distance and area. A projection that preserves area, such a Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified of the version date(s) listed below.
 Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 		Soil Survey Area: King County Area, Washington Survey Area Data: Version 18, Sep 8, 2022 Soil map units are labeled (as space allows) for map scale 1:50,000 or larger. Date(s) aerial images were photographed: Jul 6, 2020— 2020 The orthophoto or other base map on which the soil lines w compiled and digitized probably differs from the backgroun imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AmC	Arents, Alderwood material, 6 to 15 percent slopes	0.3	100.0%
Totals for Area of Interest		0.3	100.0%

3.0 FIELD INSPECTION

Based on observations, no problems were identified during resource review. In review of the downstream stormwater system, it appears that adequate capacity is in place with the existing development. The existing condition consists of 3,238 SF of impervious surface.

Based on field reconnaissance performed on November 6, 2022, no downstream flooding issues were identified. The proposed project will not have an adverse impact on the downstream system.

See Offsite Drainage System Table in this section.

OFF-SITE ANALYSIS DRAINAGE SYSTEM TABLE

Basin:			Subbasin N	lame		Subbasin Number	
Symbol	Drainage Component Type, Name and Size	Drainage Component Description	Slope	Distance from Site Discharge	Existing Problems	Potential Problems	Observation of Field Inspection, Resource Reviewer, or Resident
See Map	Type: sheet flow, swale, stream, channel, pipe, pond, size, diameter, surface area	Drainage basin, vegetation, cover, depth, type of sensitive area, volume	%	Ft	Constructions, under ca flooding, habitat or org bank sloughing, i	pacity, ponding, overtopping, anism destruction, scouring, ncision, other erosion	Tributary area, likelihood of problem, overflow pathways, potential impacts
	pipe	pipe	5	0-280	None	None	
	pipe	pipe	1	280-317	None	None	
	pipe	pipe	1	317-334	None	None	
	pipe	pipe	1	334-389	None	None	
	pipe	pipe	1	389-655	None	None	
	channel	channel	7	655-3,700	None	None	

4.0 DRAINAGE SYSTEM DESCRIPTION AND PROBLEMS DESCRIPTION

The downstream drainage path consists of discharge from the subject property into the existing storm drainage on S. 40th Street. Runoff flows west for several hundred feet before discharging into a natural conveyance flowing north for approximately 1/2 mile. Runoff continues north in a catch basin and pipe system until discharging into Lake Washington..

No problems have been identified through the Level 1 Downstream Analysis.

5.0 MITIGATION OF EXISTING OR POTENTIAL PROBLEMS

The proposed development does not exhibit any potential problems. The existing condition consists of 3,238 SF of impervious surface and the proposed condition consists of 4,957 SF of impervious surface. This increase in impervious results in approximately 0.03 CFS increase of runoff to the downstream system (see enclosed WWHM calculations). Conveyance calculations were run for a 12-inch concrete pipe at 1% (ex. road slope is almost 5%) showing that it can convey 3.57 CFS. Considering only 3 SFRs and about 500 feet of road contribute to the existing drainage system, the downstream system would not be compromised by an increase of 0.03 CFS of runoff. See calculations/maps at end of report.

As a result, this project will not aggravate or create any new problems based on the above information.

Pipe Conveyance Capacity

Capacity of 12-inch pipe at 1.0%	• •	
Flow (cfs)	Q=VA	3.572395
Velocity (fps)	V=(k/n)(A/P) ^{2/3} S ^{1/2}	4,548515
	k=	1.49
Manning's n	n=	0.013
X-Sec Area (sf)	A=pi*r ²	0.785398
Pipe Radius (ft)	r=	0.5
Wetted Perim.	P=2*pi*r	3.141593
Slope (ft/ft)	S=slope	0.01

<section-header>

General Model Information

TRUST Project Na	me: v
Site Name:	Veresko
Site Address:	
City:	
Report Date:	11/8/2022
Gage:	Seatac
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2022/07/07
Version:	4.2.18

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROOF TOPS FLAT	acre 0.074
Impervious Total	0.074
Basin Total	0.074

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROOF TOPS FLAT	acre 0.114
Impervious Total	0.114
Basin Total	0.114

Routing Elements Predeveloped Routing Mitigated Routing

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1 Total Pervious Area: 0 Total Impervious Area: 0.074

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0

Total Impervious Area: 0.114

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0282145 year0.03563710 year0.04068125 year0.04722350 year0.052231100 year0.05736

Flow Frequency Return Periods for Mitigated. POC #1 **Return Period** Flow(cfs)

2 year	0.043464
5 year	0.0549
10 year	0.06267
25 year	0.072749
50 year	0.080463
100 year	0.088365

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

leal	Freuevelopeu	wiitiyat
1949	0.037	0.056
1950	0.039	0.061
1951	0.023	0.035
1952	0.020	0.031
1953	0.022	0.034
1954	0.023	0.035
1955	0.026	0.040
1956	0.026	0.039
1957	0.029	0.045
1958	0.023	0.036

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971	0.024 0.023 0.025 0.022 0.024 0.024 0.030 0.020 0.034 0.039 0.027 0.026 0.031	$\begin{array}{c} 0.037\\ 0.036\\ 0.038\\ 0.033\\ 0.037\\ 0.036\\ 0.046\\ 0.031\\ 0.053\\ 0.060\\ 0.042\\ 0.040\\ 0.048\end{array}$
1972 1973 1974 1975 1976 1977 1978 1979 1980	0.032 0.020 0.029 0.033 0.022 0.024 0.029 0.040 0.036	0.050 0.030 0.044 0.051 0.034 0.037 0.045 0.062 0.056
1980 1981 1982 1983 1984 1985 1986 1987 1988	0.030 0.029 0.042 0.034 0.021 0.029 0.025 0.039 0.024	$\begin{array}{c} 0.030\\ 0.045\\ 0.064\\ 0.052\\ 0.033\\ 0.045\\ 0.039\\ 0.061\\ 0.037\end{array}$
1989 1990 1991 1992 1993 1994 1995 1996 1997	0.030 0.050 0.040 0.021 0.018 0.020 0.026 0.028 0.027	$\begin{array}{c} 0.046\\ 0.077\\ 0.062\\ 0.033\\ 0.028\\ 0.031\\ 0.040\\ 0.043\\ 0.042\end{array}$
1998 1999 2000 2001 2002 2003 2004 2005	0.027 0.056 0.028 0.031 0.036 0.028 0.028 0.052 0.024	0.042 0.086 0.043 0.047 0.055 0.043 0.081 0.081
2006 2007 2008 2009	0.021 0.049 0.039 0.036	0.033 0.075 0.061 0.056

Ranked Annual Peaks

v

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 **Rank** Predeveloped Mitigated 1 0.0560 0.0863

0.0560	0.0863
0.0524	0.0808
0.0503	0.0775
	0.0560 0.0524 0.0503

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 6 27 8 9 30 12 33 4 5 6 37 33 4 5 6 37	0.0490 0.0416 0.0402 0.0395 0.0395 0.0395 0.0392 0.0365 0.0365 0.0360 0.0357 0.0345 0.0345 0.0329 0.0324 0.0329 0.0324 0.0329 0.0299 0.0298 0.0295 0.0294 0.0295 0.0294 0.0293 0.0290 0.0286 0.0279 0.0278 0.0278 0.0278 0.0278 0.0274 0.0272 0.0270 0.0263 0.0261 0.0260	0.0755 0.0640 0.0619 0.0608 0.0608 0.0606 0.0604 0.0563 0.0562 0.0555 0.0551 0.0551 0.0531 0.0521 0.0508 0.0499 0.0483 0.0499 0.0483 0.0472 0.0461 0.0460 0.0454 0.0452 0.0452 0.0452 0.0447 0.0441 0.0452 0.0422 0.0422 0.0420 0.0420 0.0420 0.0403 0.0401
38 39 40 41	0.0256 0.0255 0.0248 0.0240	0.0394 0.0393 0.0382 0.0370
42 43 44 45 46 47 48	0.0240 0.0239 0.0239 0.0235 0.0235 0.0235 0.0234	$\begin{array}{c} 0.0370\\ 0.0369\\ 0.0368\\ 0.0368\\ 0.0363\\ 0.0361\\ 0.0361\\ 0.0361\end{array}$
49 50 51 52 53 54 55 56 56	0.0229 0.0228 0.0219 0.0216 0.0213 0.0212 0.0211	$\begin{array}{c} 0.0353\\ 0.0352\\ 0.0341\\ 0.0338\\ 0.0333\\ 0.0329\\ 0.0326\\ 0.0326\\ 0.0326\end{array}$
58 59 60 61	0.0203 0.0200 0.0199 0.0196 0.0183	0.0313 0.0308 0.0307 0.0302 0.0282

Duration Flows The Duration Matching Failed

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0141	1805	6876	380	Fail
0.0145	1636	6367	389	Fail
0 0149	1475	5942	402	Fail
0.0153	1343	5540	412	Fail
0.0156	1228	51/0	/18	Fail
0.0160	1102	1776	133	Fail
0.0164	1002	1151	400	Fail
0.0168	020	1117	450	Fail
0.0100	920 851	387/	450	Fail
0.0172	700	3505	455	Fail
0.0180	726	3382	465	Fail
0.0183	665	3189	400	Fail
0.0187	611	2007	475	Fail
0.0101	571	2780	188	Fail
0.0101	533	2607	180	Fail
0.0133	188	2/62	4 03 504	Fail
0.0133	400	2321	51/	Fail
0.0203	420	2160	516	Fail
0.0207	380	2033	522	Fail
0.0210	364	1002	522	Fail
0.0214	330	1781	525	Fail
0.0210	316	1686	523	Fail
0.0222	296	1567	520	Fail
0.0220	230	1/56	525	Fail
0.0230	256	1378	538	Fail
0.0233	238	1207	511	Fail
0.0207	200	1225	554	Fail
0.0241	206	11//	555	Fail
0.0240	106	1066	5/3	Fail
0.0243	181	1005	555	Fail
0.0257	171	956	559	Fail
0.0260	161	896	556	Fail
0.0260	148	856	578	Fail
0.0268	130	818	588	Fail
0.0200	135	768	568	Fail
0.0276	122	733	600	Fail
0.0280	113	698	617	Fail
0.0284	108	657	608	Fail
0.0287	105	617	587	Fail
0.0291	100	595	595	Fail
0.0295	92	564	613	Fail
0.0299	87	544	625	Fail
0.0303	84	514	611	Fail
0.0307	73	486	665	Fail
0.0311	71	457	643	Fail
0.0314	65	435	669	Fail
0.0318	63	419	665	Fail
0.0322	62	401	646	Fail
0.0326	58	381	656	Fail
0.0330	54	366	677	Fail
0.0334	54	348	644	Fail
0.0337	52	331	636	Fail
0.0341	50	317	634	Fail
0.0345	46	302	656	Fail

0.0349 0.0353 0.0357 0.0361 0.0364 0.0368 0.0372 0.0376 0.0380 0.0384 0.0388 0.0391 0.0395 0.0399 0.0403 0.0407 0.0411 0.0414 0.0418 0.0422 0.0426 0.0430 0.0434 0.0445 0.0445 0.0445 0.0445 0.0445 0.0465 0.0468 0.0472 0.0468 0.0472 0.0468 0.0472 0.0468 0.0472 0.0476 0.0480 0.0484 0.0488	45 40 33 29 22 22 22 20 71 31 9 9 9 9 9 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7	$\begin{array}{c} 289\\ 274\\ 263\\ 252\\ 241\\ 230\\ 220\\ 210\\ 201\\ 193\\ 183\\ 180\\ 171\\ 167\\ 153\\ 148\\ 142\\ 139\\ 135\\ 126\\ 121\\ 114\\ 110\\ 107\\ 105\\ 104\\ 100\\ 95\\ 90\\ 87\\ 84\\ 81\\ 73\\ 72\\ 68\\ 66\\ 65\end{array}$	$\begin{array}{c} 642\\ 685\\ 692\\ 763\\ 753\\ 793\\ 785\\ 839\\ 913\\ 919\\ 914\\ 1058\\ 1315\\ 1391\\ 1700\\ 1644\\ 1577\\ 1544\\ 1687\\ 1575\\ 1512\\ 1425\\ 1375\\ 1312\\ 1485\\ 1428\\ 1357\\ 1285\\ 1242\\ 1200\\ 1350\\ 1216\\ 1200\\ 1350\\ 1216\\ 1200\\ 1133\\ 1100\\ 1083\end{array}$	Fail Fail Fail Fail Fail Fail Fail Fail
0.0465 0.0468 0.0472 0.0476 0.0480 0.0484 0.0488 0.0492 0.0495 0.0495 0.0495 0.0503 0.0507 0.0511 0.0515 0.0518 0.0522	7666666554332222	84 81 73 72 68 66 65 63 63 60 58 56 54 53 53 51	$\begin{array}{c} 1200\\ 1350\\ 1216\\ 1200\\ 1133\\ 1100\\ 1083\\ 1260\\ 1260\\ 1260\\ 1500\\ 1933\\ 1866\\ 2700\\ 2650\\ 2650\\ 2650\\ 2550\end{array}$	Fail Fail Fail Fail Fail Fail Fail Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	Basin	1			

Mitigated Schematic

	?	Basin	1			

Predeveloped UCI File

Mitigated UCI File

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com